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Mesenchymal Stem Cells

Stem cells are a special type of cell, which can be found in 
almost all types of tissue and through the entire life span of 
multicellular organisms. Their main function is to provide 

tissue development, homeostasis and to repair tissue damage. Stem 
cells are characterised as cells that have the capacity to self renew, 
multipotency/pluriopotency, clonality, and are divided into embry-
onic stem cells and adult stem cells. 

Mesenchymal Stem Cells (MSCs) 

 Mesenchymal Stem Cells (MSCs) are a group of adult stem cells 
occurring naturally in the body. Adult stem cells are undifferentiated
cells found in numerous tissues throughout the body that divide to 
replenish dying cells and to regenerate damaged tissues. To date, 
other than bone marrow stem cells, MSCs have been identifi ed in a 
variety of tissues,1-3 such as adipose tissue, peripheral blood, spleen, 
brain, synovial fl uid, dermis, muscle, dental pulp, umbilical cord, 
placenta, skin, liver, pancreas and intestines that are differentiated 
along several mesenchymal lineages. On the other hand, there are 
signifi cant differences in the proliferation and their differentiation 
abilities, and in harvesting procedures among these MSCs.

 In 2007, The International Society for Cellular Therapy (ISCT) 
agreed that a MSC should adhere to plastic in standard culture con-
ditions; and express (≥ 95%+) CD105, CD73, CD90 and not express 
(≤ 2%+) CD45, CD34, CD14 or CD11b, CD79a or CD19, HLA-DR 
and should give at least three differentiated lineages: osteoblastic, 
adipogenic, chondroblastic (this needs to be demonstrated by staining
of in vitro differentiated cell cultures).4 However, the isolation 
of stem cells remains a major obstacle because of the lack of
universally accepted markers. There are still controversies in
obtaining reproducible results by the published methods, especially 
where differentiation protocols are concerned.5-9 Meanwhile, different
isolation methods cause striking impacts on the differentiation
potential of adult stem cells.10,11 There is a limited number of studies 
comparing the differentiation capacity of stem cells obtained from 
various sources using the same differentiation protocols.12-17 Since 
there is no consistency between the established protocols of different
labs, it is also quite challenging to interpret previously reported 
data.

 MSCs have generated considerable biomedical interest since 
their multi-lineage potential was fi rst identifi ed in 1999.18 MSCs 
can differentiate several cell types and produce important growth 
factors and cytokines.19,20 MSCs have the ability to modify the
response of immune cells thereby associating with immune-related 
disorders, especially autoimmune diseases.21,22 Despite the wide 
distribution of MSCs in the body, the bone marrow remains the 
principal source for most MSC-based pre-clinical and clinical studies
where MSCs have mainly been characterized after isolation.19

Actually, MSCs are a rare population in bone marrow aspirates. 
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The frequency of MSCs is approximately 1/106 nucleated 
cells in adult bone marrow and 1/104 nucleated cells in 
umbilical cord.23 The number of MSCs has been noted to 
decrease with age.24 Later on, more primitive MSCs were 
discovered. Immunomagnetically separated cells were 
named mesodermal progemitor cells (MPCs) or multipo-
tent adult progenitor cells (MAPCs).25,26

Expansion of Mesenchymal Stem Cells

 The expansion of MSCs is a necessity for clinical use. 
MSCs are rare in the human body but can be expanded 
in vitro to hundreds of millions of cells, isolated from
the other cells by adherence to plastic and consecutive
passaging. MSCs proliferate to spindle-shaped cells
in confl uent cultures. Although homogeneous by light
microscopy, even single cell–derived colonies form a
molecularly heterogeneous population of cells that vary 
to some extent in their differentiative capacity. Even if 
MSCs rapidly expand 1 billion-fold, individual cells in 
a culture exhibit a highly variable expansion potential.
Furthermore, the cell yield after expansion varies with the 
age and condition of the donor and with the harvesting
techniques   used.   Naturally,   differences   in   isolation 
techniques,   culture    conditions,   media    additives,   and 
sub-culturing techniques greatly affect cell yield and
possibly also the phenotype of the expanded cell product.
The gene expression/proteomics of MSCs that have been 
culture-expanded depend on the culture conditions, pas-
sage, species, and other factors which may or may not 
refl ect in vivo events. Moderate subcultivation will not 

change the karyotype or telomerase activity of MSCs, 
but if the cells are cultured, many passages, and signs of
senescence and apoptosis appear.27

Mesenchymal Stem Cells from Bone Marrow (Figure 1)

 MSCs were fi st identifi ed in the stromal compart-
ment of bone marrow by Friedenstein and colleagues in 
1960s.28-31 MSCs are conventionally extracted from bone 
marrow sources as a cellular therapy for infl ammatory
associated conditions. Specifi cally, the most advanced 
clinical trials in the area of regenerative medicine have 
been performed by the company Osiris, whose main
product is a ‘universal donor’ MSC, termed ‘Prochymal’. 
This cellular product has entered Phase III trials in graft 
versus host disease, and is currently being tested for heart 
failure.32 Other bone marrow derived MSC-like products 
are in clinical trials, for example, Mesoblast is in Phase 
III assessing its Mesenchymal Precursor Cell for effi cacy 
in post hematopoietic transplant graft failure, as well as 
in Phase II for heart failure.33 Therapeutic advantages of 
MSC include their ability to migrate to injured tissue, in 
part via detections of hypoxia through the CXCR4-SDF-1 
axis differentiation activity into multiple tissues release 
of trophic factors inhibition of apoptosis stimulation of
angiogenesis, inhibition of infl ammation, and stimula-
tion of Treg activity.34-44 Despite the advantages of the
current   approaches,   bone   marrow   contains   relatively
small numbers of MSC, thus, as previously mentioned, 
therapeutics with bone marrow for systemic applications 
requires ex vivo expansion. 
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Figure 1: A. CD34-/CD45- cells show fi broblastic morphology typical of MSCs.
 B. CD34+/CD45+ cells show spherical morphology consistent with lymphohematopoietic cells.
 C. FACS analysis of murine MSCs. Cells were uniformly negative for CD34 and positive for CD44 
 (95+0.6%), CD90 (99.1+0.1%), and CD105 (89+2.1%), markers associated with MSCs.
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Mesenchymal Stem Cells from Adipose Tissue 

 Adipose tissue contains approximately 100-1000 fold 
higher MSC concentrations, or approximately 50-100,000 
MSC per ml.45 Given the relative ease of extracting 500 
ml of lipoaspirate, it is conceptually feasible to generate 
a 25-50 million cell dose of MSC, which is close to the 
systemic doses of MSC that are typically used in clinical
trials of allogeneic expanded cells (e.g. 50-100 million 
cells in various clinical trials).46 Conceptually, given that 
the MSC present in the stromal vascular fraction (SVF, 
Figure 2) are autologous, one could envision higher thera-
peutic potential due to the lack of allo-immune clearance 
when compared to allogeneic MSC, although this needs to 
be assessed experimentally.

 Adipose MSCs (Figure 3) contain several similarities 
and differences when compared to bone marrow derived 
MSC, although this area is still considered to be contro-
versial. Specifi cally, in animal cardiac infarct models, it 
has been demonstrated that expanded adipose MSCs are 
superior to bone marrow MSC in terms of stimulating
angiogenesis, decreasing cardiac pathology, and stimulating
VEGF and FGF secretion.47 Using an in vivo lentiviral-
labeled system, it was demonstrated that adipose-derived 
MSC (ASC) have a superior ability to BM derived MSC 
(BDSC) to integrate into cardiac muscle after injury,
as well as to restore function.48 In addition to specifi c
propensities for differentiation, adipose tissue-derived 
MSC appear to be superior to bone marrow in terms of 
proliferative potential without loss of telomere length.
Vidal et al.49 demonstrated that adipose MSC could multiply
almost twice as many cell passages without undergoing 
senescence when compared to bone marrow MSC.

 A much simpler procedure, for which adipose tissue 
is uniquely suited, is the administration of autologous, 
non-expanded cellular fraction. The rationale behind this 
derives from observations that: a) adipose tissue contains 
substantially higher numbers of MSC compared to bone 
marrow50 b) MSC from adipose tissue do not appear to
decrease in number as a result of age.51,52 It has also 

Figure 2: Stromal Vascular Fraction (SVF) extracted from
 adipose tissue.

Figure 3: Mesenchymal Stem Cells derived from
 adipose tissue. 

Mesenchymal Stem Cells

been reported that the expression level of 5 chemokine
receptors (CCR1, CXCR4, CCR7, CXCR6, and CXCR3) 
is higher in ASC than BDSC, which indicates ASC might 
show a better migration and homing capacity following 
transplantation.53 These distinct characteristics will deter-
mine the strategy for cell-based therapy.

 Thus it appears that the MSC component of adipose 
tissue possesses numerous preclinical and clinical thera-
peutic properties and may be an important component of 
the SVF cell population that is responsible for therapeutic 
effects observed after administration. Patients received the 
indicated amount of cells by intravenous injection (2x106 
cells per ml diluted in Saline solution), intra-articular
injection (2.5x106 cells per ml in each injured joint,
diluted in Saline solution and the patient’s own serum). 
Multiple injections of cells were given to increase the 
therapeutic effi cacy. Follow-ups were performed for all 
patients at 1, 3, 6 and 12 months. SVF cells were isolated
and prepared under the guidelines of Good Tissue
Practices 21 CFR 1271 as related to sample screening 
and processing in the sterile fl ow hood, inside of a class 
10,000 clean room.54 Thirteen patients with rheumatoid
arthritis were treated with 38-148 million SVF cells
intravenously and intra-articularly.  Although no hemato-
poietic or biological abnormalities were noted, one of the 
patients reported facial fl ushing, fever and myalgia after 
a third of four injections. These symptoms all resolved 
spontaneously.

Mesenchymal Stem Cells from Dental Pulp (DPSC)
 
 Dental pulp (DP) is a well defi ned compartment of 
soft tissue, which keeps a primitive structure similar to 
the gelatinous tissue of the umbilical cord. Dental pulp 
represents a well delimited separated compartment from 
other tissues, which retains a unique histological structure 
and a stem cell niche. Since there are two sources for
dental pulp development (dental mesenchyme of neural 
crest origin and vascular mesenchyme (Figure 4)) there 
are two different lines of DPSCs inside the DP. DPSCs can 
be isolated from two DP compartments. Jakub Suchánek 
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and co-workers55 named these compartments according to 
their localization within the DP- subodontoblastic com-
partment (inner surface of tooth and outer part of DP; 
SOc) and perivascular compartment (the inner part of 
DP;PVc). DPSCs isolated from PVc were spindle-shaped 
with long processes. Conversely, DPSCs from SOc were 
more rounded.

 In the year 2000, Gronthos and co-workers56 isolated 
stem cells from the human dental pulp (DPSCs). The pulp 
tissue was extracted from impacted third molars. In the 
year 2003, Miura et al57 isolated stem cells from human 
exfoliated deciduous teeth (SHED; Figure 5). DPSCs can 
be cultivated for a long time, over 60 population doublings 
in cultivation media designed for bone marrow MPCs.55 
After reaching Hayfl ick’s limit, they still have a normal
karyotype. Initial doubling time of the cultures was from 
12 to 50 hours for the fi rst 40 population doublings,
after reaching 50 population doublings, doubling time
had increased to 60–90 hours. Regression analysis of the
unaccumulated    population    doublings    proved    a   tight
dependence of population doublings on passage number 
and slow decrease of proliferation potential. In comparison
with bone marrow MPCs, DPSCs share similar biological
characteristics and stem cell properties. The results of 
our experiments proved that both DPSCs and MPCs are 
highly proliferative; clonogenic cells that can be expanded
beyond   Hayflick’s   limit   and   remain   cytogenetically
stable. Moreover two different populations of DPSCs can
be isolated. These DPSCs lines differed from one another 
in morphology. Because of their high proliferative and
differentiation potential, DPSCs can become a more
attractive, easily accessible source of adult stem cells for 
therapeutic purposes.

 Cultivated DPSCs and SHED were highly proliferative
and cytogenetically stable stem cells. Morphological
differences of cells isolated from both defi ned com-
partments were not related to changes in proliferation
potential.   Over   the   entire    cultivation    period,   Jakub 
Suchánek and co-workers55 did not observe any changes
in cell viability and cells remained undifferentiated.
Dental pulp has represented an alternative and easily
accessible source for obtaining tissue-specifi c stem cells 
which are histocompatible with tissues of the individual 
patient. In comparison with bone marrow MPCs, DPSCs
share similar biological characteristics and stem cell
properties. DNA analysis proved that DPSCs have more 
cells in S-G2 phase than bone marrow MPCs.55 A higher
proliferation activity of DPSCs was confi rmed by DT 
trend    analysis.   In   addition,   any   signs   of   spontaneous
differentiation were not observed during DPSCs long term 
cultivation.

 Stem cells from human exfoliated deciduous teeth 
show higher proliferation rates and increased population 
doubling time than stem cells from human permanent 
teeth pulp.9,57 Apart from deciduous teeth, the umbilical
cord is another postnatal organ discarded after birth 
and the collection of cells does not require an invasive
procedure with ethical concerns. Stromal cells, as the dom-
inant cells of this fetus-derived tissue, possess multipotent 
properties between embryonic stem cells and adult stem 
cells. They bear a relatively higher proliferation rate and
self-renewal capacity.58 The suitable cells should be chosen
for specifi c tissue engineering trials. The most reliable cell 
source for dental tissue engineering is that of autologous 
pulp stem/progenitor cells isolated from deciduous teeth, 
which have been exfoliated naturally.
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Credit: Encyclopædia Britannica, Inc.
http://www.britannica.com/EBchecked/media/112882/Cross-
section-of-an-adult-human-molar

Figure 4:  Tooth; cross section of an adult human.

Figure 5: Mesenchymal   stem   cells   derived    from   human
 exfoliated deciduous teeth (SHED) Cells with the
 ability to develop into a wide range of tissues.
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The Potential Clinical Use of Mesenchymal Stem Cells

 A signifi cant improvement in understanding MSC
biology in recent years has paved the way for their
potential clinical use. A new era has begun in the treat-
ment of diseases with the discovery of stem cells from 
diverse organs and tissues.  Increasing evidence suggests 
that one mechanism of action by which cells provide
tissue protection and repair may involve paracrine factors,
including cytokines and growth factors, released from 
transplanted stem cells into the surrounding tissue.59 

There is increasing evidence that stem cells themselves, 
specifi cally MSCs, secrete a variety of pro-infl ammatory 
and anti-infl ammatory cytokines. MSCs represent an
advantageous cell type for allogeneic transplantation 
as well because MSCs are immune-privileged with low
major histocompatibility complex I (MHC I) and no 
MHC II expression, therefore possessing a reduced risk of
allogeneic transplant rejection.19

 Different tissue-originated MSCs may have variance
in their differentiation capacity even if cultured in exactly 
the same microenvironment. While investigators report 
studies of MSCs using different methods to isolate the 
cells and using different approaches to characterize the 
cells, the considerable therapeutic potential of human 
MSCs has generated markedly increasing interest in a wide 
variety of biomedical disciplines. Thus it is increasingly
diffi cult to compare study outcomes, which hinders 
progress in the fi eld. Obviously, it is critical to have an
acknowledged standard to evaluate the characteristics
of MSCs.

Cardiovascular therapeutic potential

 The cardiovascular therapeutic potential of bone
marrow mesenchymal stromal/stem cells (MSCs) is largely
mediated by paracrine effects. The traditional preparation
of   MSC   has   involved   plastic   adherence-isolation.
In contrast, prospective immunoselection aims to improve
cell   isolation    by    enriching   mesenchymal   precursor
cells (MPC) of higher purity. This study compared the 
biological   characteristics    and    cardiovascular   trophic
activity of plastic adherence-isolated MSC (PA-MSC) 
and MPC prepared from the same human donors by
immunoselection for stromal precursor antigen-1 (STRO-1).
Compared to PA-MSC, STRO-1-MPC displayed greater 
(1)    clonogenicity,    proliferative    capacity,   multilineage
differentiation   potential,  and   mRNA   expression   of
mesenchymal stem cell-related transcripts. In vitro assays 
demonstrated that conditioned medium from STRO-1-
MPC had greater paracrine activity than PA-MSC, with 
respect to cardiac cell proliferation and migration and
endothelial cell migration and tube formation. Enrichment 
for STRO-1 is also accompanied by increased expres-
sion of cardiovascular-relevant cytokines and enhanced 
trophic activity.60 Over the last decade, cellular therapy 
has emerged as a potential adjunct in the management 
of ischemic heart disease and congestive heart failure.61

Preclinical and clinical studies have shown that bone 

marrow (BM)-derived MSC are capable of mediating 
cardiovascular reparative effects, predominantly through 
indirect, paracrine mechanisms that target endogenous 
cardiomyocytes and vascular cells.62-65 The fi eld of MSC 
research remains hindered by a lack of uniformity in the 
methods used for cell isolation, culture, and characterization.
Until now, the majority of in vitro and in vivo cardiovas-
cular studies have utilized BM MSC prepared by plastic
adherence-isolation.18,66   However,   this   non-selective
technique is limited both by the low frequency of
clonogenic colony forming units-fi broblastic (CFU-F) 
in adult human BM and the contamination of immature
mesenchymal precursor cells (MPC) with more mature 
stromal and non-mesenchymal cell types.67 Prospective 
immunoselection has been advocated as an alternative 
strategy for isolating pure populations of immature MPC, 
based on their expression of cell surface antigens to which 
specifi c monoclonal antibodies (mAb) may be directed. 
One such example is the murine IgM mAb that identifi es 
stromal precursor antigen-1 (STRO-1). The STRO-1 anti-
gen is expressed on the surface of approximately 10–20% 
of adult human BM that includes all CFU-F, Glycopho-
rin-A+ nucleated red cells, and a small subset of CD19+ 

B-cells, but is not expressed on hematopoietic stem and 
progenitor cells (HSC).68 STRO-1 is widely regarded as 
a marker of early mesenchymal/stromal precursor cells, 
because it has been strongly linked to mesenchymal cell 
clonogenicity, plasticity, and other progenitor cell charac-
teristics.69-74 This study also presents new fi ndings to show 
that the presence of STRO-1+ precursors is an important
indicator of the cardiovascular paracrine properties of 
mesenchymal cells. Many of the limitations of MSC
therapy for cardiovascular disease arise from the inade-
quate engraftment and  transdifferentiation of transplanted 
cells in recipient myocardium.75 Crucially, by comparison
to plastic adherence-isolation, the expanded progeny
of STRO-1-MPC displays biological characteristics
indicative of a higher retention of immature precursor 
cells supporting the notion that improving the precision 
and quality of STRO-1-MPC isolation is an important 
consideration in optimizing mesenchymal cell biology 
and repair.

Novel wound-healing promotion therapy 

 Chronic   wounds   are   difficult    to    heal,   and   little
improvement has been made in preventing the associated 
morbidity and disability over the past few decades.76 The 
best available treatment for chronic wounds achieves only 
a 50% healing rate. Therefore innovative treatments to 
enhance wound healing and regeneration are needed. The 
major goal of wound-healing biology is to discover how 
skin can be induced to reconstruct damaged parts more 
perfectly.77

 SHED and hMSCs (human mesenchymal stem cells) 
can enhance wound healing by promoting re-epitheliali-
zation and the relationship with the extracellular matrix, 
especially HA.78 Treatments using MSCs would be
effective, but the number, proliferation and differentiation
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potential of MSCs decline with increasing age.79 On the 
other hand, SHED can be obtained without any invasion 
and could be a substitute for MSCs.57 SHED signifi cantly 
promotes   wound   healing   compared    with    Fibro   and
control groups.78 Deciduous teeth, which are considered 
to be medical waste, could provide novel therapeutic
approaches   for    the    treatment    of   wounds    and   novel
stem-cell sources for wound healing.78  

Implications of the immunoregulatory functions of mesen-
chymal stem cells in the treatment of human liver diseases

 The    transplantation   of    mesenchymal    stem   cells 
(MSCs) has been recently studied in animal models, and 
in clinical trials of patients with fulminant hepatic failure, 
end-stage liver diseases and inherited metabolic disorders.
Modulatory cytokines produced by MSCs can inhibit
immunocyte proliferation and migration to the liver, 
thereby attenuating infl ammatory injury and reducing
hepatocyte apoptosis. In addition, MSCs play an important
role in regressing liver fi brosis and in supporting the 
function, proliferation and differentiation of endogenous 
hepatocytes under appropriate conditions.80 These fi ndings
indicate that MSC treatment is promising in the therapy 
of liver diseases, and although remarkable progress has 
been achieved in basic and clinical MSC studies, optimal
therapeutic   regimens   for   the   clinical   application   of
MSCs, such as optimal doses, transplantation routines and
interval periods for transplantation, need to be examined 
in more detail.

Anti-infl ammatory and anti-tumor effects

 It has been demonstrated that MSC exhibit innate 
anti-tumor effects against PANC-1 cells and can serve 
as delivery vehicles for IFN-β for the treatment of
pancreatic cancer. However, these benefi cial effects may 
be lost in therapies combining MSC with anti-infl amma-

tory agents.81 It is now clear that trophic modulation of
infl ammation, cell death, fi brosis, and tissue repair are the 
main mechanisms of MSC therapy. Delivery of growth
factors, cytokines, and other signaling molecules secreted
by MSCs is often suffi cient to obtain therapeutic effects.82 

Other diseases

 It has been shown that the transplantation of MSCs 
could be an effective therapy for many diseases,83-103

including blood disease, diabetes type 1 and 2, osteoar-
thritis, lung disease, spinal cord injury, liver injury, stroke, 
myocardial    infarction,   amyotrophic    lateral   sclerosis,
parkinson’s disease, neural disease, acute graft-versus-
host-disease   (GVHD),   systemic   lupus   erythematosus 
(SLE), kidney disease and cancers. To date, hundreds 
of clinical trials using MSCs have been registered in the
database   (http://www.clinicaltrials.gov/)   of    the   US
national institutes of health. However, it is essential to 
fi nd the specifi c adult stem cell with the greatest potential
for tissue engineering and transplantation, those which
require good survival rates and stable hemodynamic
behavior. In addition, the difference between gene and 
protein expressions in different adult stem cells has to be
determined fi rst. The success of stem cell-based therapy 
will depend on cell availability, the potential to differentiate
between specifi c cell lineage, infl ammation response after 
transplantation, etc. Mesenchymal stem cell types from 
different sources could partly fulfi ll the criteria of being a 
suitable candidate for a specifi c lineage, which in turn is 
very important in regenerative cell therapies. 
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